
Today we will look at two more types of linear systems problems: Mixture problems, and speeddistance-time problems.

Example 1: Solve a mixture problem

Ms. Warner has a bottle of 5% acetic acid and a bottle of 10% acetic acid. For a chemistry experiment, she needs a solution that is 8% acetic acid. This means she will have to mix the two together. If she needs 250 mL of 8% acetic acid, how much of each should she use?

and 150mL

of 10% solution

Problem Solving With Linear Systems: Part 2 MPM2D

Example 2: Solve a mixture problem Speed - distance - time

Bort is on a canoe trip, and took 2 hours to travel 12km down a river. The return trip (against the current) took 3 hours. What was Bort's paddling speed, and what was the speed of the current?

Visual and Assigning Variables:

downstream ic kilometres per hour

Let p	be	the	paddling	cpeed
-------	----	-----	----------	-------

Let c be the current speed

Time (h) Speed (km/h) Distance (km) Direction P+C 2 12 Downstream 12 P - C Upstream

 $Distance = Speed \times Time (Downstream)$

upstream

 $Distance = Speed \times Time (Upstream)$

Equation: $\frac{12}{2} = (p+c)(2)$ (i)

Solution:

$$(1) + (2) : 10 = 2p$$

$$p = 5$$

Bort puddles at 5km/h, the current Concluding Statement: 15 1 km/h