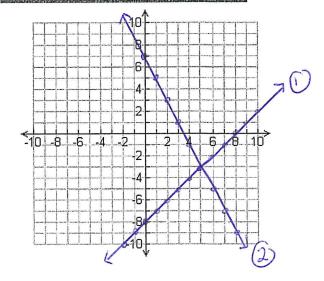
## The Method of Substitution: Part 2 MPM2D

Today we will be learning a purely **algebraic** method for solving linear systems when our lines are not in y = mx + b form.

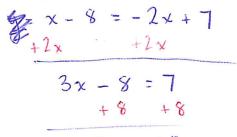
1) Consider the following linear system. Rearrange the second equation, and solve this linear system by graphing.

$$y = x - 8$$
 ①
$$2x + y = 7$$
 ② 
$$y = -2x + 7$$

Point of Intersection = (5, -3)



2) Consider again the same linear system. Using your rearrange version of equation ②, use yesterday's method to find the point of intersection.



$$3 \times = 15$$

$$1 \times = 5$$
In practice, both equations may not be in  $y = mx + b$  form and it may be

Sub in (1)

$$y = 5 - 8$$
 $y = -3$ 

In practice, both equations may not be in y = mx + b form and it may be very impractical to use this method. We will now solve this linear system a third way by using a more general substitution method.

Use this key idea (substituting equation ① into equation ②) to solve the above linear system.

Sub (1) in (2)
$$2x + x - 8 = 7$$

$$3x - 8 = 7$$

$$+8 + 8$$

$$3x = 15$$

sub 
$$x = 5$$
 in (1)  
 $y = 5 - 8$   
 $y = -3$ 

## The Method of Substitution: Part 2 MPM2D

Example: Use our new method to solve the following linear system.

$$y = -3x + 4$$
 ① Sub ① in 2  
 $2x - 3y = 32$  ②  $2x - 3(-3x + 4) = 32$   
 $2x + 9x - 12 = 32$   
 $11x - 12 = 32$   
 $11x = 44$ 

sub 
$$x=4$$
 in (1)  
 $y=-3(4)+4$   
 $y=-8$   
POI is  $(4,-8)$ 

If both equations are not in y = mx + b form you will have to choose a variable to isolate. In this next example, let's isolate for x in the second equation.

$$2x + 3y = 9 \quad \textcircled{0}$$

$$x - 2y = 1 \quad \textcircled{0} \quad -7 \quad x = 2y + 1$$

$$x = 2(1) + 1$$

$$x = 3$$

Sub (2) in (1)  

$$2(2y+1) + 3y = 9$$

$$4y + 2 + 3y = 9$$

$$7y + 2 = 9$$

$$-2$$

$$-2$$

$$7y = 7$$

$$1y = 1$$

You try it: Decide which variable you are going to isolate in the following linear system, and try our new method.

$$2x + 5y = 7 \quad \textcircled{0}$$

$$4x + y = 5 \quad \textcircled{2} \rightarrow y = -4x + 5$$

Sub 
$$x = 1$$
 in (2)  
 $y = -4(1) + 5$   
 $y = 1$ 

Sub (2) in (1)  

$$2x+5(-4x+5)=7$$
  
 $2x-20x+25=7$   
 $-18x+25=7$   
 $-25$   
 $-18x=-18$   
 $x=1$ 

## **Practice**

Solve the following linear systems using our new method.

1) 
$$y = 3x - 5$$

$$2x + 5y = 9$$
 ②

$$2x+5(3x-5)=9$$

$$2x + 15x - 25 = 9$$

$$17x - 25 = 9$$

2) 
$$x = 4y - 7$$
 ①

5x + 2y = 31 ②

$$22y = 66$$

$$y = 3$$

3) 
$$x = 6y - 1$$

$$=6y-1$$

$$4x - 2y = -26$$
 ②

$$24y - 4 - 2y = -26$$

$$22y = -22$$

$$y = 3(2) - 5$$

$$x = 4(3) - 7$$

$$x = 6(-1) - 1$$

## The Method of Substitution: Part 2 MPM2D

4) 
$$x-3y=2$$
 ①  $\rightarrow x = 3y + 2$   
 $5x+y=26$  ②  $\rightarrow y = -5x + 26$ 

a) Solve this system by isolating x in equation ①

$$5(3y+2)+y=26$$

$$15y+10+y=26$$

$$16y+10=26$$

$$16y=16$$

$$y=1$$
Sub in (i)  $\rightarrow x=3(1)+2$ 

5) 
$$2x + 3y = 10$$
 ①  $x - 5y = -8$  ②  $\rightarrow x = 5y - 8$ 

Sub in (i) 
$$2(5y-8)+3y=10$$
  
 $10y-16+3y=10$   
 $13y-16=10$   
 $13y=26$   
 $y=2$ 

Sub in (2) 
$$x = 5(2) - 8$$
 $[x = 2]$ 

Solutions: 1) (2, 1)

2) (5,3)

3) (-7, -1)

4) (5,1)

5) (2,2)

(2, 2) 6) (4, 10)

b) Solve this system by isolating y in equation @

$$x-3(-5x+26) = 2$$
  
 $x+15x-78=2$   
 $16x-78=2$   
 $16x=80$   
 $x=5$   
Sub in (2) ->  $y=-5(5)+26$ 

6) 
$$5x - y = 10$$
 ①  $\rightarrow$   $-y = -5x + 10$   
 $4x + 3y = 46$  ②  $y = 5x - 10$ 

sub in (2) 
$$4x + 3(5x - 10) = 46$$
  
 $4x + 15x - 30 = 46$   
 $19x - 30 = 46$   
 $19x = 76$   
 $x = 4$ 

sub in (1) 
$$y = 5(4) - 10$$

$$y = 10$$