The Method of Substitution: Part2 { MPM2D
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Today we will be learning a purely algebraic method for solving ': §
linear systems when our lines are not in y = mx + b form. ‘\t
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1) Consider the following linear system. Rearrange the second Ll
equation, and solve this linear system by graphing. 5 NERES
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2) Consider again the same linear system. Using your rearrange{version of equation @, use yesterday’s
method to find the point of intersection.
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In practice, both equations may not be in y = mx + b form and it may be very impractical to use this
method. We will now solve this linear system a third way by using a more general substitution method.

"M one ;? e
Qf-v-%"\'bt"-"\s and subghlte b mbe Hha othee

KEY IDEA: \¢ D\ ate A Y Qr\(\)a‘ e

Use this key idea (substituting equation @ into equation @) to solve the above linear system.
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Example: Use our new method to solve the following linear system.
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If both equations are not in y = mx + b form you will have to choose a variable to isolate. In this next
example, let’s isolate for x in the second equation.
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You try it: Decide which variable you are going to isolate in the fdllowing linear system, and try our new
method.
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Practice

Solve the following linear systems using our new method.
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4) x—3y=2
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a) Solve this system by isolating x in equation ®
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Solutions: 1) (2,1) 2) (5,3)

3) (=7,-1)

b) Solve this system by isolating y in equation @
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4) (5,1) 5) (2,2) 6) (4,10)



