Today we are going to review the following topics:

- Finding the slope between two points using the slope formula
- The relationship between the slopes of perpendicular lines
- Finding the equation of a line algebraically

The Slope of a Line Segment Formula

Visual:

Formula Derivation:

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$$

You try it: Find the slope of the line segment joining the following pairs of points. Simplify as much as possible.

$$x, y, x_2, y_2$$

a) (2,3) and (17,8)

b)
$$(-2,8)$$
 and $(4,-2)$

$$x', y', x_2, y_2$$

c) (-5,0.5) and (2.5,0)

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{-2 - 8}{4 - (-2)}$$

$$m = \frac{0 - 0.5}{2.5 - (-5)}$$

$$=\frac{8-3}{17-2}$$

$$= -\frac{10}{6}$$

$$=\frac{-0.5 \times 2}{7.5 \times 2}$$

$$= -\frac{5}{3}$$

$$=\frac{-1}{15}$$

Parallel and Perpendicular Slopes

the same slope Recall that parallel lines have.....

Complete the following table to reinforce these ideas:

Equation of Line	Slope of Line	Slope of a Parallel Line	Slope of a Perpendicular Line
$y = \frac{2}{3}x + 5$	2/3	2/3	-3/2
y = -2x + 12	-2	-2/,	1/2
<i>y</i> = 7	0	0/,	undefined

Finding the Equation of a Line Algebraically

We will be doing a lot of work with lines over the next few weeks. An important skill for us to have will be to take some general information about a line, and determine its exact equation. For the following examples, we will draw a visual of each situation. In practice, you can always make a rough sketch if you need to visualize a problem.

We will always use the same strategy:

- Determine the slope of the desired line (if not given)
- Use the slope and a point to find the y-intercept of the desired line

Example 1: Find the equation of the line with a slope of 1/3, through the point (6, 1).

Example 2: Find the equation of the line that is parallel to 2x + 3y = -9 through the point (5, -3).

Review: Analytic Geometry MPM2D

Example 3: Find the equation of the line that passes through the points A(-6, -7) and B(9, 3)

Solution:

$$m = \frac{3 - (-7)}{9 - (-6)} = \frac{10}{15} = \frac{2}{3}$$

$$y = mx + b$$

$$y = \frac{2}{3}x + b$$

$$3 = \frac{2}{3}(9) + 6$$

$$b = -3$$

$$y = \frac{2}{3}x - 3$$

$$y = \frac{2}{3}x - 3$$

Example 4: Find the equation of the line through (1, 1) that is perpendicular to
$$x - 4y = 7$$
.

Solution:
$$m_{\perp} = -\frac{4}{3} = -4$$

$$y = mx + b$$

 $y = -4x + b$
 $1 = -4(1) + b$

$$b=5$$

Visual:

1) Find the equation of the line with a slope of -3/4, through the point (8, 1).

Solution:

$$y = \frac{3}{4}x + b$$

$$1 = \frac{-3}{4}(8) + b$$

$$\emptyset = \frac{3}{4} \times + 7$$

Visual:

7-3y=-4x-9-7y=4x+3

Example 2: Find the equation of the line that is perpendicular to 4x - 3y = -9 through the point (4, 4).

Solution: $m_{\perp} = -\frac{3}{4}$

$$y = -\frac{3}{4}x + 6$$

$$4 = -\frac{3}{4}(4) + 6$$

$$y = -\frac{3}{4} \times +7$$

Visual:

Finding Equations of Lines Practice | MPM2D

3) Find the equation of the line that passes through the points A(5, -7) and B(1,3)

4) Find the equation of the line with the same y-intercept as 2x + 5y = 10 that is also perpendicular to 7x - 9y = 5.

