Factoring Complex Trinomials | MPM2D

Factoring Complex Trinomials

A complex trinomial... Is a trinomial of the form

ax2 + bx + c where a ≠ 1.

Sometimes we can find a GCF to help us factor complex trinomials.

Examples:

a)
$$y = 5x^{2} + 10x - 15$$

$$= 5(x^{2} + 2x - 3)$$

$$= 5(x + 3)(x - 1)$$

b)
$$y = -4x^2 - 20x + 56$$

b)
$$y = -4x^2 - 20x + 56$$
 $(x) - 14$

$$= -4(x^2 + 5x - 14) + 5$$

$$= -4(x + 7)(x - 2)$$

Try these two on your own, or with your seat partners.

c)
$$y = 3x^2 + 12x - 15$$

$$= 3(x^{2} + 4x - 5) + 4$$

$$= 3(x+5)(x-1)$$

d)
$$y = -2x^2 + 20x - 48$$

$$= -2(x^2 - 10x + 24) + -10$$

$$=-2(x-4)(x-6)$$

Connecting Factoring With Graphing

Consider the quadratic relation: $f(x) = 2x^2 - 6x - 8$

a) Where is the y-intercept for this relation? Plot it. (0.-8)

b) Factor this relation using our skills from today.

$$y = 2x^{2} - 6x - 8$$

$$= 2(x^{2} - 3x - 4)$$

$$= 2(x - 4)(x + 1)$$

$$= 2\left(x-4\right)\left(x+1\right)$$

- c) Where are the zeros for this relation? Plot them.
- d) Find the axis of symmetry and the vertex, and then complete the sketch of this relation.

AOS:
$$\chi = \frac{-1+4}{2} = 1.5$$

AOS:
$$\chi = \frac{-1+4}{2} = 1.5$$
 $y = 2(1.5-4)(1.5+1)$
= $2(-2.5)(2.5)$
= -12.5

e) State this quadratic relation in all three forms:

Standard Form	Factored Form	Vertex Form
$y=2x^2-6x-8$	y=2(x-4)(x+1)	$y = 2(x-1.5)^2-12.5$

You try it: Convert the following relations into factored form by common factoring, then simple trinomial factoring. Make a sketch of each relation by plotting the y-intercept (if plottable), then the x-intercepts, and finally finding the vertex.

$$y = 3x^{2} + 12x + 9$$

$$= 3(x^{2} + 4x + 3)$$

$$= 3(x + 1)(x + 3)$$

AOS:
$$x=-2$$

$$y=3(-2+1)(-2+3)$$

$$=3(-1)(1)$$

$$=-3 \qquad \text{Vertex } (-2,-3)$$

