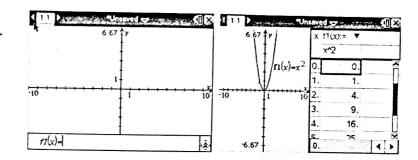
In this investigation we will look at a new form of quadratic relations. Our today we will be looking at the x-intercepts or zeros of parabolas.

TECHNOLOGY OPTION

If you are using a TI-nspire, add a new "Graph Document" and enter your relation. You can bring up a table of values by pressing "ctrl" then "T".



Complete the following tables fully, describing the transformations that each graph undergoes from the basic parabola $y = x^2$.

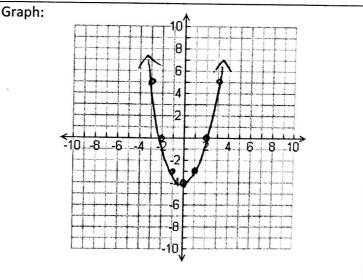
Mr. Smith will do the first one with you:

Relation #1: $y = (x - 2)(x + 2)$

Neiatio
у
5
0
-3
-4
-3
0
5

X-intercepts: (-2,0) (2,0)

Step Pattern:



Reflect: Based on what you saw with this first relation, could you predict the x-intercepts and step pattern of the following relations?

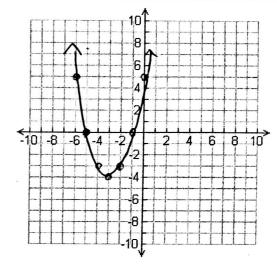
Relation	x-intercepts	Step Pattern
y = (x+1)(x+5)		
y = 2(x-1)(x+3)		

x	у
-6	5
-5	б
-4	-3
-3	-4
-2	-3
-1	0
0	5

X-intercepts: (-1,0) $\begin{cases} (-5,0) \end{cases}$

Step Pattern: 1,3,5

Graph:



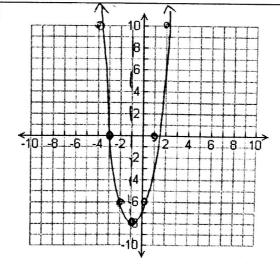
Relation #3: y = 2(x - 1)(x + 3)

у
0
-6
-8
-6
0
10
24.

X-intercepts: (-3,0) (1,0)

2,6,10 Step Pattern:

Graph:



How did you do with your predictions? Did you need to make any adjustments? Try predicting the x-intercepts and step pattern for these relations.

Relation	x-intercepts	Step Pattern
y = 0.5(x - 1)(x + 7)	(1,0) { (-7,0)	0.5, 1.5, 2.5
y = 5(x+2)(x+8)	(-2,0) ((-8,0)	5, 15, 25.

Factored Form of a Quadratic Relation MFM2P

The factored form of a quadratic relation is given by:

$$y = a(x - s)(x - t)$$

Where:

"s" and "t" tells you....

"a" tells you...

Notes: We now have seen 3 different forms of quadratic relations...

1)
$$y = \alpha (x - s)(x - t)$$
 2) $y = \alpha (x - k)^2 + 1c$
All 3 of these forms are such as

All 3 of these forms are quadratic, and produce a parabola if graphed.

Example: Sketch a graph of y = 2(x-2)(x-6) and label the x-intercepts, vertex, and axis of

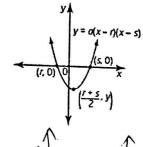
KEYIDEA: The axis of symmetry 1s halfway between the x-intercepts.

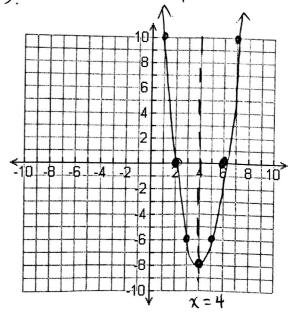
To find the axis of symmetry, average the two x-intercepts.

$$AOS = \frac{2+6}{2} = 4$$

Vertex: y = 2(4-2)(4-6)= 2(2)(-2)

(4,-8) is the vertex

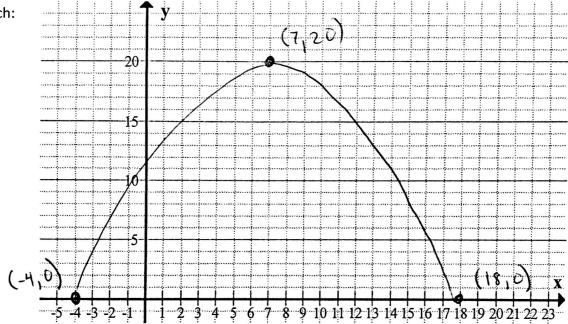




Example 2: The Dufferin Gate is a parabolic arch that is approximately 20 m tall and approximately 22 m wide.

- a) Sketch a graph of the arch with the left base located on the x-axis 4 units to the left of the y-axis. Label the x-intercepts and vertex.
- b) Determine an equation to model the arch.

Sketch:



Solution to a)

$$-4 + 22 = 18$$

AOS:
$$-\frac{4+18}{2} = \frac{14}{2} = 7$$

Solution to b)

$$y = a(x-s)(x-t)$$

 $y = a(x+4)(x-18)$

$$20 = -121a$$

$$\alpha = \frac{-20}{121}$$

Equation:
$$y = \frac{-20}{121}(x+4)(x-18)$$