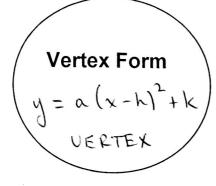
Summary of what we know:



Factored Form

In both cases, "a" gives the step pattern

1) The following equations are all in vertex form: $y = a(x - h)^2 + k$. Complete the table.

Equation	Vertex	Step Pattern
$y = (x-4)^2 - 3$	(4,-3)	1,3,5
$y=10(x-2)^2$	(2,0).	10,30,50
$y=2x^2-7$	(0, -7)	2,6,10

2) The following equations are all in factored form: y = a(x - s)(x - t). Complete the table.

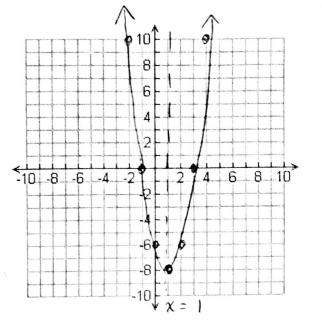
Equation	Zeros (x-intercepts)	Step Pattern
y = (x-4)(x+3)	(4,0) { (-3,0)	1,3,5
y = 4(x+7)(x+9)	(-7,0) { (-9,0)	4,12,20
y = 20x(x-5)	(0,0) { (5,0)	20,60,100

Factored Form Warm-up | MFM2B

3) Sketch the following relations on the grids provided.

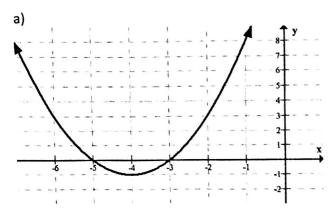
a)
$$y = 2(x-1)^2 - 8$$
 $\forall : (1, -8)$ $2, 6, 10$

ADS:
$$x = \frac{-1+3}{2} = 1$$



KEY IDEA: The same quadratic relation can be represented in different forms. Just like the same line has a slope-intercept form (y = mx + b) and a standard form (Ax + By + C = 0).

4) Given the following graphs of a quadratic relation, write down the equation in factored form AND vertex form.



Factored Form:

$$y = (x+5)(x+3)$$

Vertex Form:

$$y = (x+4)^2 - 1$$