Investigation: Equations of Lines | MFM2P

For the following 4 relations, describe the written rule, generate points using your table of values, and draw each line. When you've drawn the line, read off the slope of the line, and the y-intercept.

Investigation: Equations of Lines MFM2P

Relation #3							
Equation: $y = 3x - 4$							
Written Rule: The y-values are triple the x-values subtract 4.	Graph: 10 6 6 1						
x y -3 -13 -2 -10 -1 x 3 - 4 - 7 0 - 4 1 -1 2 2	-10 -8 -6 -4 -2 -4 -6 -8 -10 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -						
Slope = $\frac{3}{i}$ = 3	y – intercept = — H						

If you look at the equation carefully, you can actually just read off the slope and y-intercept. This means that we can make graphs of linear relations straight from the equation!

Graphing Linear Relations | MFM2P

KEY IDEA: The relation y = mx + b is a linear relation, where...

Example: Read off the slope and y-intercept from the following equations...

Equation of Line	Slope (m)	y-intercept (b)	
y = 5x - 6	5	- 6	
$y = \frac{2}{3}x + 4$	2/3	4	
y = -2x + 0	-2	0	
y = -4x + 1	-	1	
y = 5	0	5	

To graph a line in this form is easy. You just plot the y-intercept, and then use the slope to plot more points.

Graph the following 3 lines on the grid provided by reading off the slope and y-intercept:

a)
$$y = 2x + 5$$

Slope: 2 or 3

y-intercept: 5

Slope: $\frac{2}{2}$

y-intercept: -4

Graphing Linear Relations MFM2P

c) $y = (-\frac{1}{2})^{x}$

Slope:

rise = -1 run = 2

y-intercept: ()

d)
$$y = -x + 5$$

Slope: - 1 (15e = - 1 run = 1

y-intercept: 5

You try graphing the following:

a) $y = 3x - 4$	b) $y = \frac{1}{3}x + 5$	c) $y = -x - 4$	d) $y = 7$	
Slope (m) = 3/	Slope (m) = $\frac{1}{3}$	Slope (m) = -) /	Slope (m) = 0 (hore	rontal)
y-int (b) = - 4	y-int (b) = 5	y-int (b) = - 4	y-int (b) = 7	

