
Bryden's granny got him a piggy bank for his birthday (and she gave him a few coins to put in there too). Mr. Smith adds loose change to it every month. 5 months after getting the piggy bank, Bryden has \$25.50 in his piggy bank. 8 months after getting it, Bryden has \$37.80.

a) Use the slope formula to determine the slope between these two points

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

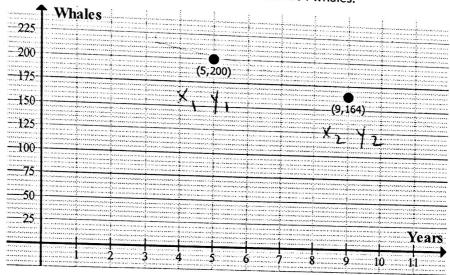
$$= \frac{37.80 - 25.50}{8 - 5}$$

$$= \frac{12.30}{3}$$

$$= 84.10 \text{ per month.}$$

b) Use algebra to the equation of a line that model this scenario.

x = 5	y=25,5
$y = \frac{4 \cdot 1}{x + b}$	
nd solve for "b"	
4.1(5)+	b
= 20.5 + -20.5	Ь
9	
1 x + 5	
	$y = \frac{4.1}{x + b}$ and solve for "b" $4.1(5) + 20.5 + 20.5$


d) How much will Bryden have in his piggy bank 1 year later? (12 months)

$$y = 4.1(12) + 5$$

 $y = 54,20$ in lyear.

e) How much will Bryden have in his piggy bank 5 years later? (5x12=60 months)

Modelling With Linear Relations | MFM2P

A population of whale off the coast of a BC town has been dying off. 5 years after the start of the decline, there were 200 whales left. 9 years after, there were 164 whales.

a) Use the slope formula to determine the

slope between these two points

$$\frac{\sqrt[3]{2} - \sqrt[3]{1}}{\sqrt[3]{2} - \sqrt[3]{1}}$$

$$=\frac{164-200}{9-5}$$

$$= -\frac{36}{4}$$

d) How many whales will there be in 15 years?

$$y = -9(15) + 245$$

= -135 + 245
= 110 whales.

b) Use algebra to the equation of a line that model this scenario.

$$m = -9 \qquad x = 9 \qquad y = 164$$
Put in your slope:
$$y = \frac{-9}{x+b}$$
Put in your point and solve for "b"
$$164 = -9(9) + 6$$

$$164 = -81 + 6$$

$$+81 + 81$$

$$245 = 6$$

e) When will the whales die out? 0 = -9x + 245 $\frac{9x}{9} = \frac{245}{9}$

x=27 years.

Equation: 6 = 49x = 60004 y = -9x + 245