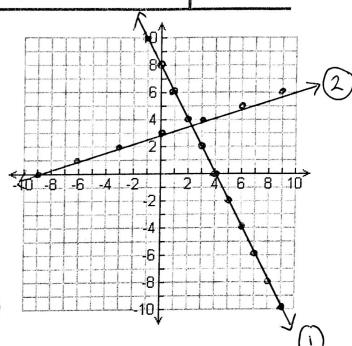
Solving Linear Systems | MPM2D

Motivation: Where do the following two lines meet?


$$y = -2x + 8$$
 ①

slope =
$$-2/$$
 y-intercept = $(0, 8)$

$$y = \frac{1}{3}x + 3$$
 ②

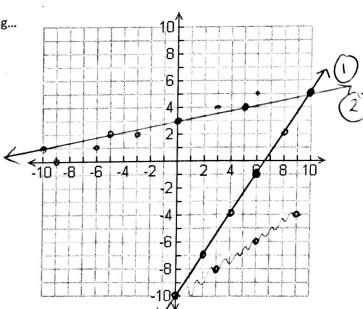
slope =
$$\frac{1}{3}$$
 y-intercept = $(0,3)$

Where do they meet? Around (2.5, 3.5)

What you have just done is solve a linear system of two lines.

Today's focus will be on solving linear systems by graphing. We will see that this is not always a viable strategy, and start developing algebraic methods next week.

Example: Solve the following linear system by graphing...


$$y = \frac{3}{2}x - 10 \quad ①$$

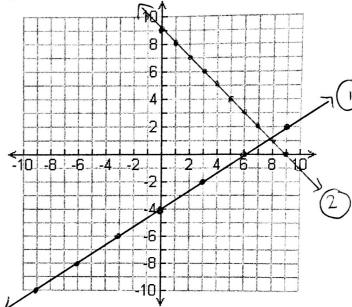
slope =
$$\frac{3}{2}$$
 y-intercept = $(0, -10)$

$$y = \frac{1}{5}x + 3 \qquad ②$$

slope =
$$\frac{1}{5}$$
 y-intercept = $(0, 3)$

Point of Intersection: (10,5)

Solving Linear Systems | MPM2D

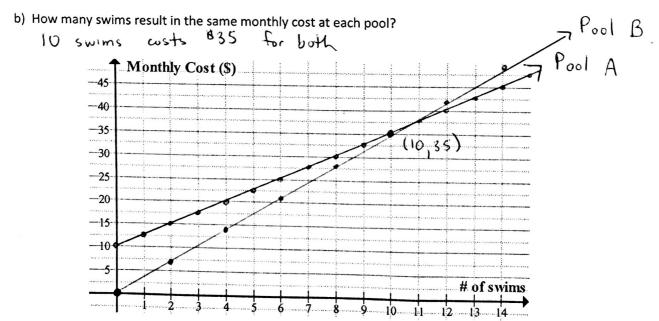

Example: Estimate the point of intersection of the following linear system...

$$y = \frac{2}{3}x - 4 \qquad \textcircled{1}$$

slope =
$$\frac{2}{3}$$
 y-intercept = $(0, -4)$

$$y = -x + 9$$
 ②

slope =
$$-$$
 y-intercept = $(0, 9)$



Estimated Point of Intersection:

Not every linear system can be solved by graphing. We will develop algebraic methods to solve linear systems. **KEY IDEA:**

Example: Pool A charges swimmers a flat fee of 10\$ every month, and \$2.50 for each additional swim. Pool B charges swimmers \$3.50 per swim, with no flat fee.

a) Graph a line represent each pools fees.

