Volume of Prisms | MEL4E

Today, we are going to start talking about the volume of 3-dimensional objects.

One certain type of 3-dimensinal objects are called prisms. A prism is.... A 3D object

KEY IDEA: To find the woods of any prism...

Consider the following 4 prisms. We will find their volumes.

a) A rectangular prism

b) A triangular prism

A base = lw $V = A_{base} \times h$ $A_{base} = bxh+2$ $V = A_{base} \times h$ = 21×14 = 294×5 = $1,470 \text{ cm}^3$ = $1,470 \text{ cm}^3$ = $1,820 \text{ cm}^3$

c) A circular prism (cylinder)

d) A prism with an irregular base

$$V = A_{base} \times h$$
$$= 15.5 \times 10$$

$$= 155 \,\mathrm{m}^3$$

Summary: Using the fact that $Volume\ of\ a\ Prism = Area\ of\ Base\ imes Height\ you\ can\ find$ the volume of any prism. Moreover, this motivates specific formulas:

Shape	Area of Base	Volume Formula
Rectangular Prism	$A = l \times w$	$V = \mathbf{l} \times \mathbf{w} \times \mathbf{h}$
Triangular Prism	$A = \frac{b \times h}{2}$	$V = \frac{b \times h \times l}{2}$
Cylinder	$A = \pi \times r^2$	$V = \pi \times r^2 \times h$

You just need to be able to recognize which shape you are dealing with, and know how to apply the formula correctly.

2) Mr. Smith is filling up a cooler with bags of ice. Given the measurements in the diagram...

$$V = \frac{l \times w \times h}{31 \times 22 \times 10}$$

= 6,820 cm³

$$V = \frac{11 \times r^2}{4} \times h$$
= 3.14 x 27.5 x 70
= 166, 224 cm³

c) How many bags will it take to fill up the cooler?

70 cm

Did you know: 1 cm³ is equivalent to 1 mL, which is equivalent to 1 c.c. in medical applications.

Example: Determine the volume of a can of pop. Mr. Smith will take the measurements at the front of the room. Capacity = 354 mL.

$$A_{base} = \pi \times r^{2} \qquad V = A_{base} \times h$$

$$= 3.14 \times 3.1^{2} \qquad = 30.18 \times 12.1$$

$$= 30.18 \text{ cm}^{2} \qquad = 365.18 \text{ cm}^{3}$$

$$(MORE)$$