Volume of Prisms and Pyramids MFM2P

Today, we are going to start talking about the volume of 3-dimensional objects.

Volume is.... the 3D space occupied by an object units: m³, in³, ft³, etc...

One certain type of 3-dimensinal objects are called prisms. A prism is.... a 3D shape with two identical, parallel sides (top & bottom)

KEY IDEA: To find the area of any prism...

Volume of a prism = Area of base x height

Consider the following 4 prisms. We will find their volumes.

a) A rectangular prism

 $V = l \times w \times h$ = 14 \times 21 \times 5 = 1470 cm³

c) A circular prism (cylinder)

 $V = \pi r^{2} h$ $= 3.14 \times 5.4^{2} \times 23.5$ $= 2151.7 m^{3}$

b) A triangular prism

$$V = \frac{b \times h}{2} \times l$$

$$= \frac{13 \times 8}{2} \times 35$$

$$= 1820 \text{ cm}^{3}$$

d) A prism with an irregular base

$$V = A_{base} \times h$$

= 15.5 x 10
= 155 m³

Volume of Prisms and Pyramids | MFM2P

Volume of a Pyramid: In this demonstration, we are going to derive how to find the volume of a pyramid. Mr. Smith will scoop grains using a pyramid scoop, into a prism container.

The pyramid and prism have the same base area, and height.

Predict: How many scoops do you think it will take to fill up the prism?

Observe: How many scoops did it actually take?

Conclusion:

Examples: Find the volume of the following pyramids with Mr. Smith

c) Sometimes, we can't measure the height of a pyramid directly. In these cases, we can use the Pythagorean Theorem and their slant height.

